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1. The optimal control problem

e 5: state space, a denumerable set;
e A: action space A, equipped with the Borel o-algebra B(A);

o A(t,1)(€ B(A)): sets of actions available to a controller

when the system is in state © € S at time ¢;

® ¢(7|t,7,a): Nonhomogeneous transition rates such that

¢ (i) == sup Jqt,é,a) <oo VieS; (1)
t>0,acA(ti)

e r(t,7,a) and ¢g(t,7): Reward and terminal reward,respectively;
e ¢.(t,1,a) and g;(t,7): Costsand terminal costs,k =1,--- | N.
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For each sample w = (ig, 01,41,...,0,, 0y, ), let

Tk(w) =014+ 60,4+ ...+ 06, TOO<(,<J) = lim Tk(w)

k—o00
be the k-jump and explosion time,respectively, where ;. denotes
the holding time of state 7;._1.
Let Th(w) = 0, and define the state process {x;,t > 0} by
tr= Y Ig<ieryin + Algsny).
k>0
Here and below, /g stands for the indicator function on E, and

the A and ap are cemetery state and action, respectively.



e Randomized history-dependent policies 7(da|w,t): is de-

fined by the following expression with kernels 7" (dal-)

(dalw,t) = > Ipcper,.ym (dalio, 01, . ., O, i, t — T)
k>0

“1‘]{0} (t)?T()(dCL‘Z'O, O) -+ ]{tZToo}5aA(da>'
e [ : The class of all randomized history-dependent policies.

e [["": The class of all Markov policies 7(dalt, ).

e /: a deterministic Markov policy f: A measurable map f
on [0,00) x S with f(t,7) € A(t, 7).
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Given a initial distribution v on S, each 7w € II together with
q(j|t, 7, a) ensures a unique probability space (£, F,IPT).
Let T" € (0, 00) be the fixed finite (time) horizon.

For each policy m € 11, we define

V(m,u,h) [/ / (t, z¢, a)mw(dalw, t)dt + h(T, x7)

provided that the expectations are well defined.

Let d;. be the constrained constants, and then define
UZZ{WEHI V(?T,Ck,gk>§dk, fOl“kZl,...,N}, (2)
which denotes the set of policies satisfying the /N constraints.
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A policy m € Il is called feasible if it is in U. Throughout this
article, to avoid trivial cases, we suppose that U # (), and this
assumption will not be mentioned explicitly below.

Definition 1 A policy 7* € U is called constrained-optimal
if

V(r*,r,g) =supV(m,r, g). (3)

el

The main objective of this talk is to show the existence and

structure of a constrained-optimal Markov policy.



2. Preliminary facts

In this section, we present some assumptions and preliminary
facts that are used to prove our main results.

Assumption A. There exist a function V3 > 1 on S and

constants ¢ > 0, b > 0, M > 0 such that

(1) Diesa(lt,i,a)V(j) < cV (i) +b, for all (¢4, a);

(ii) ¢*(7) < MV (i) for all i € S, with ¢*(7) as in (1);

(iii) |u(t,i,a)| < MV (i) for all u € {r, g, cx, gr} and (¢, 1, a).

(iv) L:=> .. V(i)y(i) < oo, where « is the distribution.



Lemma 1. Under Assumption A, for each m € II, the

following assertions hold.
(a) ET[V (z)] < e“[L + Y for each ¢t > 0;

(b) PI(xy = i) = (i) + Eﬂfot [y alils, zs—, a)m(dale, s)ds],
for each ¢t > 0 and 7 € S

(€) D ies Pl(xy =1) =1, for each £ > 0.

Lemma 1(b) gives the analog of the forward Kolmogorov e-
quation, which will be used to derive the analog of the Ito-
Dynkin formula for the process {x;,t > 0}. To serve the analog,

we introduce some additional conditions and notations.
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Assumption B. There exist a function V3 > 1 on S and

constants ¢; > 0, by > 0 and M; > 0 such that

() X,es Vili)aljlt, i, a) < Vi) + by, for all (£,i,a) € K.
(ii) V(4)[1 + ¢*(2)] < MiVA(2), with ¢*(¢) as in (1);

(i) Z/ = ¥, es V(i1 (0) < oo,



Let [ := [0,T]. Given any function w > 1 on S, a Borel

measurable function ¢ on a Borel space Z x S is called w-
bounded if

folla = sup £

——— < 0.
(2,i)€Z %S w(i)

e B,(/ x.S): the space of all w-bounded functions on I x .S

e (;(I x 9): the space of all bounded continuous functions.
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If ©(t,7) is absolutely continuous in t € I, we denote by

©i(t,1): the derivative of ¢(t,7) with respect to t, and by

L,(i) C I: the collection of points in I, when the (t,7) is
not defined.

With V' and Vj as in Assumption B, let

By, (I x S):={p €By(I xS): ¢ €Briy(l x5).}

On the other hand, for any Markov policy m and functions

u(...,t,4,a), we use the following notation:

(..., t1,m) = /Au( . tya)m(dalt, ).
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Lemma 2. Under Assumptions A and B, we have

(a) For each m € [T and h € By(I x 5),

AT;[TAh<Svi>Q(i t,%a)ﬁ(dalw,t)dsdt]
= ET UOT h(t,xt)dt] = _/OT h(t,z')dt] (i),

€S -
(b) For any w € [M and 1 < k < N, V(m, ¢, 0;¢,1) is a the
unique solution in IB%%/’RGU x §) of the equation
or(t, i) + er(t i, m) + > (L, f)qllt,i,m) =0V t € LE(i)
jeS
with the condition (T, %) = 0 for each 7 € S.
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3. Occupation measures and properties

In this section, we introduce the occupation measure of a
policy for the finite horizon CTMDP, and present some basic
properties of the space of the occupation measures.

Definition 1. For each 7 € II, the occupation measure n™
of m on K, is defined by

n'(dt,i,da) = K[, —pm(dalw, t)|dt, i €S, (4)
where

K ={(t,i,a):t€[0,T], i €S, a € A(t,i)}.
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Let co(t,4,a) = r(t,i,a), go(t,i,a) = g(t,i,a), and

Hi(t,i,a) = c(t,i,a) +ng q(jlt, i, a)
JES
1 Ny
+T;gk(T,])7(]), k=0,1,...,N.
J

Lemma 3. Under Assumptions A and B, for each 7 € II
and 0 < k < N, we have

V(m, Hy) / Z/Hk t,i,a)n"(dt,i,da)
= E"[Hy]
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Then, our constrained optimality problem (3) can be rewrite

as follows:
Mazximize E"[Hy| over n € D,,
where D, .= {n"|E" [H}) < dj,k=1,...,N, 7 € II}.

e D :={n": mwell}: the set of all occupation measures;

e P(K): the collection of measures n on K with n(K) =T,
e 7)(dt,i): the marginal of n on I x S;

o P(K) = {1 € PK)| Lyeg@iil x {i}) < o0).
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The following theorem characterizes occupation measures.

Theorem 1. Under Assumptions A and B, we have

(a) For each n € Py (K), it holds that n € D if and only if

/ Z/ At Z (/ q(jIt,i,a)h (s,j)ds) n(dt,,da)

T
/Zhsy (ds, j) /h(s,fy)dthECb(IxS)
0

JES
(b) For each 7 € II, there exists a Markov policy ¢ such that

n"=n’
(c) D is convex.
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Definition 2. For each w > 1 on S, the w-weak topol-
ogy on Pg(K) is defined as the weakest topology with re-
spect to which, fOT >oics Jault,i,a)n(dt, i, a) is continuous
in n € Py(K) for each continuous function w on K such that
SUDP(t,,a)e K % < 0.

Here and below, Py, (K) and Py(K) are endowed with
the (V 4+ V1) and V -weak topologies, respectively.

Lemma 4. Under Assumptions A and B, if ¢(j|t,,a) is
continuous in (t,7,a) € K for each fixed j € S, then D is

closed in Py y,(K) and in Py(K).
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For the compactness of the set of occupation measures, we

introduce the following condition.

Assumption C. Let V' and Vj be as in Assumption B.
(i) q(j|t, 1, a) are continuous in (¢,4,a) € K (for fixed j € S).

(ii) There exist compact subsets K, of K satistying | J,, K, =

K and limy, o0 inf (4 ; gyex\x,, “/}8 = oo, where inf () := oo.

Assumption C implies that each A(t,7) is compact.

Theorem 2. Suppose that Assumptions A, B, and C hold.
Then, D is compact in Py (K).
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4. Characterization of optimal policies

This part establishes the existence and structure of a constrained-
optimal policy.
Assumption D.

(@) r(t,i,a), ck(t,i,a) and ..o V(j)q(jlt, i, a) are continu-

ous on K.

(b) Either ¢*(i) or gi(7T, %) are bounded on .S;

Theorem 3. Under Assumptions A, B, C and D, there

exists a Markov constrained-optimal policy:.
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Under the assumptions, we define the space of performance

vectors for the model with the criteria:

U:={Vmrg),Virec,g) ..., V(ren gy)) | mell}.

Definition 3. A policy m € II is said to be a mixture of
N + 1 deterministic Markov policies fi., k=0,1,2,..., N, if

N
n"(dt,i,da) = Zpknf’f(dt, i,da),

k=0
where pr > Oforall 0 < k< N,and pg+p1+---+py = 1.
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We next give our main statement.
Theorem 4. Under Assumptions A-D, the following as-

sertions hold:

(a) The space of performance vectors, U, is nonempty, compact

and convex.

(b) Any extreme point of U (there exists at least one), say v,

is generated by a deterministic Markov policy, say f, i.e.,
v = (V(f7 r, g): V(f) C1, gl)v ) V(f7 CN, gN))

(¢) There exists a constrained-optimal policy, which is a (N +

1)-mixture of deterministic Markov policies.
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