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1. The optimal control problem

• S: state space, a denumerable set;

• A: action space A, equipped with the Borel σ-algebra B(A);

• A(t, i)(∈ B(A)): sets of actions available to a controller

when the system is in state i ∈ S at time t;

• q(j|t, i, a): Nonhomogeneous transition rates such that

q∗(i) := sup
t≥0,a∈A(t,i)

|q(t, i, a)| <∞ ∀ i ∈ S; (1)

• r(t, i, a) and g(t, i): Reward and terminal reward,respectively;

• ck(t, i, a) and gk(t, i): Costs and terminal costs,k = 1, · · · , N .
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For each sample ω = (i0, θ1, i1, . . . , θn, in, · · · ), let

Tk(ω) := θ1 + θ2 + . . . + θk, T∞(ω) := lim
k→∞

Tk(ω).

be the k-jump and explosion time,respectively, where θk denotes

the holding time of state ik−1.

Let T0(ω) ≡ 0, and define the state process {xt, t ≥ 0} by

xt :=
∑
k≥0

I{Tk≤t<Tk+1}ik + ∆I{t≥T∞}.

Here and below, IE stands for the indicator function on E, and

the ∆ and a∆ are cemetery state and action, respectively.
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• Randomized history-dependent policies π(da|ω, t): is de-

fined by the following expression with kernels πk(da|·)

π(da|ω, t) =
∑
k≥0

I{Tk<t≤Tk+1}π
k(da|i0, θ1, . . . , θk, ik, t− Tk)

+I{0}(t)π
0(da|i0, 0) + I{t≥T∞}δa∆

(da).

• Π : The class of all randomized history-dependent policies.

• Πm: The class of all Markov policies π(da|t, i).

• f : a deterministic Markov policy f : A measurable map f

on [0,∞)× S with f (t, i) ∈ A(t, i).
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Given a initial distribution γ on S, each π ∈ Π together with

q(j|t, i, a) ensures a unique probability space (Ω,F ,Pπγ).

Let T ∈ (0,∞) be the fixed finite (time) horizon.

For each policy π ∈ Π, we define

V (π, u, h) = Eπγ
[∫ T

0

∫
A

u(t, xt, a)π(da|ω, t)dt + h(T, xT )

]
provided that the expectations are well defined.

Let dk be the constrained constants, and then define

U := {π ∈ Π : V (π, ck, gk) ≤ dk, for k = 1, . . . , N}, (2)

which denotes the set of policies satisfying the N constraints.
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A policy π ∈ Π is called feasible if it is in U . Throughout this

article, to avoid trivial cases, we suppose that U 6= ∅, and this

assumption will not be mentioned explicitly below.

Definition 1 A policy π∗ ∈ U is called constrained-optimal

if

V (π∗, r, g) = sup
π∈U

V (π, r, g). (3)

The main objective of this talk is to show the existence and

structure of a constrained-optimal Markov policy.
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2. Preliminary facts

In this section, we present some assumptions and preliminary

facts that are used to prove our main results.

Assumption A. There exist a function V1 ≥ 1 on S and

constants c > 0, b ≥ 0, M > 0 such that

(i)
∑

j∈S q(j|t, i, a)V (j) ≤ cV (i) + b, for all (t, i, a);

(ii) q∗(i) ≤MV (i) for all i ∈ S, with q∗(i) as in (1);

(iii) |u(t, i, a)| ≤MV (i) for all u ∈ {r, g, ck, gk} and (t, i, a).

(iv) L :=
∑

i∈S V (i)γ(i) <∞, where γ is the distribution.
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Lemma 1. Under Assumption A, for each π ∈ Π, the

following assertions hold.

(a) Eπγ [V (xt)] ≤ ect[L + b
c] for each t ≥ 0;

(b) Pπγ(xt = i) = γ(i) + Eπγ
[ ∫ t

0

∫
A q(i|s, xs−, a)π(da|e, s)ds

]
,

for each t ≥ 0 and i ∈ S;

(c)
∑

i∈S Pπγ(xt = i) = 1, for each t ≥ 0.

Lemma 1(b) gives the analog of the forward Kolmogorov e-

quation, which will be used to derive the analog of the Ito-

Dynkin formula for the process {xt, t ≥ 0}. To serve the analog,

we introduce some additional conditions and notations.
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Assumption B. There exist a function V1 ≥ 1 on S and

constants c1 > 0, b1 ≥ 0 and M1 > 0 such that

(i)
∑

j∈S V1(j)q(j|t, i, a) ≤ c1V1(i) + b1, for all (t, i, a) ∈ K;

(ii) V (i)[1 + q∗(i)] ≤M1V1(i), with q∗(i) as in (1);

(iii) L′ :=
∑

i∈S V1(i)γ(i) <∞.
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Let I := [0, T ]. Given any function w̄ ≥ 1 on S, a Borel

measurable function ϕ on a Borel space Z × S is called w̄-

bounded if

‖ϕ‖w̄ := sup
(z,i)∈Z×S

|ϕ(z, i)|
w̄(i)

<∞.

• Bw̄(I ×S): the space of all w̄-bounded functions on I ×S;

• Cb(I × S): the space of all bounded continuous functions.
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If ϕ(t, i) is absolutely continuous in t ∈ I , we denote by

ϕt(t, i): the derivative of ϕ(t, i) with respect to t, and by

Lϕ(i) ⊆ I : the collection of points in I, when the ϕt(t, i) is

not defined.

With V and V1 as in Assumption B, let

B1,0
V,V1

(I × S) := {ϕ ∈ BV (I × S) : ϕt ∈ BV+V1(I × S).}

On the other hand, for any Markov policy π and functions

u(. . . , t, i, a), we use the following notation:

u(. . . , t, i, π) :=

∫
A

u(. . . , t, a)π(da|t, i).
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Lemma 2. Under Assumptions A and B, we have

(a) For each π ∈ Π and h ∈ B1(I × S),

Eπγ

[∫ T

0

∑
i∈S

∫ T

t

∫
A

h(s, i)q(i|t, xt, a)π(da|ω, t)dsdt

]

= Eπγ
[∫ T

0

h(t, xt)dt

]
−
∑
i∈S

[∫ T

0

h(t, i)dt

]
γ(i).

(b) For any π ∈ Πm and 1 ≤ k ≤ N , V (π, ck, 0; t, i) is a the

unique solution in B1,0
V,V1

(I × S) of the equation

ϕt(t, i) + ck(t, i, π) +
∑
j∈S

ϕ(t, j)q(j|t, i, π) = 0 ∀ t ∈ Lcϕ(i)

with the condition ϕ(T, i) = 0 for each i ∈ S.
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3. Occupation measures and properties

In this section, we introduce the occupation measure of a

policy for the finite horizon CTMDP, and present some basic

properties of the space of the occupation measures.

Definition 1. For each π ∈ Π, the occupation measure ηπ

of π on K, is defined by

ηπ(dt, i, da) := Eπγ [I{xt=i}π(da|ω, t)]dt, i ∈ S, (4)

where

K := {(t, i, a) : t ∈ [0, T ], i ∈ S, a ∈ A(t, i)}.
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Let c0(t, i, a) := r(t, i, a), g0(t, i, a) := g(t, i, a), and

Hk(t, i, a) := ck(t, i, a) +
∑
j∈S

gk(T, j)q(j|t, i, a)

+
1

T

∑
j∈S

gk(T, j)γ(j), k = 0, 1, . . . , N.

Lemma 3. Under Assumptions A and B, for each π ∈ Π

and 0 ≤ k ≤ N , we have

V (π,Hk) =

∫ T

0

∑
i∈S

∫
A

Hk(t, i, a)ηπ(dt, i, da)

=: Eηπ[Hk]
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Then, our constrained optimality problem (3) can be rewrite

as follows:

Maximize Eη[H0] over η ∈ Dc,

where Dc := {ηπ|Eηπ[Hk] ≤ dk, k = 1, . . . , N, π ∈ Π}.

• D := {ηπ : π ∈ Π}: the set of all occupation measures;

• P (K): the collection of measures η on K with η(K) = T ;

• η̄(dt, i): the marginal of η on I × S;

• Pω̄(K) := {η ∈ P (K)|
∑

i∈S ω̄(i)η̄(I × {i}) <∞).
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The following theorem characterizes occupation measures.

Theorem 1. Under Assumptions A and B, we have

(a) For each η ∈ PV (K), it holds that η ∈ D if and only if∫ T

0

∑
i∈S

∫
A(t,i)

∑
j∈S

(∫ T

t

q(j|t, i, a)h(s, j)ds

)
η(dt, i, da)

=

∫ T

0

∑
j∈S

h(s, j)η̄(ds, j)−
∫ T

0

h(s, γ)ds ∀ h ∈ Cb(I × S)

(b) For each π ∈ Π, there exists a Markov policy φ such that

ηπ = ηφ

(c) D is convex.
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Definition 2. For each w̄ ≥ 1 on S, the ω̄-weak topol-

ogy on Pw̄(K) is defined as the weakest topology with re-

spect to which,
∫ T

0

∑
i∈S
∫
A u(t, i, a)η(dt, i, a) is continuous

in η ∈ Pw̄(K) for each continuous function u on K such that

sup(t,i,a)∈K
|u(t,i,a)|
ω̄(i) <∞.

Here and below, PV+V1(K) and PV (K) are endowed with

the (V + V1) and V -weak topologies, respectively.

Lemma 4. Under Assumptions A and B, if q(j|t, i, a) is

continuous in (t, i, a) ∈ K for each fixed j ∈ S, then D is

closed in PV+V1(K) and in PV (K).

17



For the compactness of the set of occupation measures, we

introduce the following condition.

Assumption C. Let V and V1 be as in Assumption B.

(i) q(j|t, i, a) are continuous in (t, i, a) ∈ K (for fixed j ∈ S).

(ii) There exist compact subsetsKm ofK satisfying
⋃
mKm =

K and limm→∞ inf(t,i,a)∈K\Km

V1(i)
V (i) =∞, where inf ∅ :=∞.

Assumption C implies that each A(t, i) is compact.

Theorem 2. Suppose that Assumptions A, B, and C hold.

Then, D is compact in PV (K).
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4. Characterization of optimal policies

This part establishes the existence and structure of a constrained-

optimal policy.

Assumption D.

(a) r(t, i, a), ck(t, i, a) and
∑

j∈S V (j)q(j|t, i, a) are continu-

ous on K.

(b) Either q∗(i) or gk(T, i) are bounded on S;

Theorem 3. Under Assumptions A, B, C and D, there

exists a Markov constrained-optimal policy.
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Under the assumptions, we define the space of performance

vectors for the model with the criteria:

U := {(V (π, r, g), V (π, c1, g1), . . . , V (π, cN , gN)) | π ∈ Π}.

Definition 3. A policy π ∈ Π is said to be a mixture of

N + 1 deterministic Markov policies fk, k = 0, 1, 2, . . . , N , if

ηπ(dt, i, da) =

N∑
k=0

pkη
fk(dt, i, da),

where pk ≥ 0 for all 0 ≤ k ≤ N , and p0 + p1 + · · · + pN = 1.
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We next give our main statement.

Theorem 4. Under Assumptions A–D, the following as-

sertions hold:

(a) The space of performance vectors, U , is nonempty, compact

and convex.

(b) Any extreme point of U (there exists at least one), say vex,

is generated by a deterministic Markov policy, say f , i.e.,

vex = (V (f, r, g), V (f, c1, g1), . . . , V (f, cN , gN)).

(c) There exists a constrained-optimal policy, which is a (N +

1)-mixture of deterministic Markov policies.
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